MOS 6581 SID
The SID is a mixed-signal integrated circuit, featuring both digital and analog circuitry. All control ports are digital, while the output ports are analog. The SID features three-voice synthesis, where each voice may use one of at least five different waveforms: pulse wave (with variable duty cycle), triangle wave, sawtooth wave, pseudorandom noise (called white noise in documentation), and certain complex/combined waveforms when multiple waveforms are selected simultaneously.
Due to imperfect manufacturing technologies of the time and poor separation between the analog and digital parts of the chip, the 6581's output (before the amplifier stage) was always slightly biased from the zero level. Each time the volume register was altered, an audible click was produced. By quickly adjusting the amplifier's gain through the main 4-bit volume register, this bias could be modulated as PCM, resulting in a "virtual" fourth channel allowing 4-bit digital sample playback.
The better manufacturing technology in the 8580 used in the later revisions of Commodore 64C and the Commodore 128 DCR caused the bias to almost entirely disappear, causing the digitized sound samples to become very quiet. Fortunately, the volume level could be mostly restored with either a hardware modification (biasing the audio-in pin), or more commonly a software trick involving using the Pulse waveform to intentionally recreate the required bias.
The software trick generally renders one voice temporarily unusable, although clever musical compositions can make this problem less noticeable. An excellent example of this quality improvement noticeably reducing a sampled channel can be found in the introduction to Electronic Arts' game Skate or Die (1987). The guitar riff played is all but missing when played on the Commodore 64c or the Commodore 128.
The 6581 and 8580 differ from each other in several ways. The original 6581 was manufactured using the older NMOS process, which used 12V DC to operate.
The 8580 was made using the HMOS-II process, which requires less power (9V DC), and therefore makes the IC run cooler. The 8580 is thus far more durable than the 6581.
Also, due to more stable waveform generators, the bit-mixing effects are less noticeable and thus the combined waveforms come close to matching the original SID specification (which stated that they will be combined as a binary AND). The filter is also very different between the two models, with the 6581 cutoff range being a relatively straight line on a log scale, while the cutoff range on the 8580 is a straight line on a linear scale, and is close to the designers' actual specifications. Additionally, a better separation between the analog and the digital circuits made the 8580's output less noisy and distorted. The noise in 6xxx-series systems can be reduced by disconnecting the audio-in pin.
The consumer version of the 8580 was rebadged the 6582, even though the die on the chip is identical to a stock 8580 chip, including the '8580R5' mark. Dr. Evil Laboratories used it in their SID Symphony expansion cartridge (sold to Creative Micro Designs in 1991), and it was used in a few other places as well, including one PC sound-card.
Despite its documented shortcomings, many SID musicians prefer the flawed 6581 chip over the corrected 8580 chip. The main reason for this is that the filter produces strong distortion that is sometimes used to produce simulation of instruments such as a distorted electric guitar. Also, the highpass component of the filter was mixed in 3 dB attenuated compared to the other outputs, making the sound more bassy. In addition to nonlinearities in filter, the D/A circuitry used in the waveform generators produces yet more additional distortion that made its sound richer in character.
Source: Wikipedia: MOS Technology 6581